Inter-valence-band hole-hole scattering in cubic semiconductors

نویسندگان

  • M. V. Dolguikh
  • R. E. Peale
چکیده

Transitions between valence subbands resulting from hole-hole scattering in cubic semiconductors have been analyzed in the frame of Coulomb interaction of valence electrons in the Luttinger-Kohn representation. Expressions for transition rates are derived. Calculated rates for transitions between lightand heavy-hole bands are presented for germanium. Hole-hole scattering has remarkably different transition probabilities and scattering-angle dependence than for scattering of holes on ionized impurities. These results are particularly important for hole lifetimes and relative subband populations in unipolar p-type devices, such as the hot hole p-Ge laser. Features of hole-hole scattering for spin polarized hole distributions are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dielectric function model for p-type semiconductor inter-valence band transitions

The contributions of inter-valence band (IVB) transitions to the dielectric function (DF) by free holes among the split-off (so), light-hole (lh) and heavy-hole (hh) bands were investigated. A model was developed to determine the DF of two p-type semiconductors, GaAs and Ge1 ySny with the Zinc-blend and Diamond crystal structures, respectively. The IVB transitions dominate the spectral range be...

متن کامل

Semiconductor Spintronics: Role of the Valence-Band Holes

Two aspects related to valence-band hole spin are considered: spin surfaces in p-type semiconductors and flipping of the hole spin by an ultrashort electric field pulse. It is shown that heavy, light, and split-off holes have different spin surfaces. In general, the shape of the surface in real semiconductors may depend on the hole wave vector direction and magnitude. The concept of spin surfac...

متن کامل

Hole spin dynamics and valence-band spin excitations in two-dimensional hole systems

In recent years, the spin dynamics and spin–orbit interaction in GaAs-based two-dimensional hole systems (2DHS) have created a lot of attention. This is due to the complex structure of the valence band, with its p-like character, which leads to strong spin–orbit coupling. In this paper, we review our recent studies on hole spin dynamics and valence-band spin excitations in GaAs-based, p-modulat...

متن کامل

Valence Band Structure of InAs1−xBix and InSb1−xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E - energy for the holes shows a reverse trend. The model is also...

متن کامل

Electron-Hole Recombination Rates for Auger Scattering in Graphene

We calculate electron-hole recombination rates for Auger scattering in Graphene. The conduction and valence band dispersion relation in Graphene together with energy and momentum conservation requirements restrict the phase space for Auger processes so that electron-hole recombination times can be much longer than 1 ps for electron-hole densities smaller than 1012 cm−2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006